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leARnIng ObjeCTIveS

In this section, you will:

•	  Identify power functions.

•	  Identify end behavior of power functions.

•	  Identify polynomial functions.

•	  Identify the degree and leading coefficient of polynomial functions.

5.2 POWeR FUnCTIOnS And POlynOmIAl FUnCTIOnS

Figure 1 (credit: Jason Bay, Flickr)

Suppose a certain species of bird thrives on a small island. Its population over the last few years is shown in Table 1.

Year 2009 2010 2011 2012 2013
Bird Population 800 897 992 1,083 1,169

Table 1

The population can be estimated using the function P(t) = −0.3t3 + 97t + 800, where P(t) represents the bird population 
on the island t years after 2009. We can use this model to estimate the maximum bird population and when it will occur. 
We can also use this model to predict when the bird population will disappear from the island. In this section, we will 
examine functions that we can use to estimate and predict these types of changes.

Identifying Power Functions
Before we can understand the bird problem, it will be helpful to understand a different type of function. A power 
function is a function with a single term that is the product of a real number, a coefficient, and a variable raised to a 
fixed real number. (A number that multiplies a variable raised to an exponent is known as a coefficient.)
As an example, consider functions for area or volume. The function for the area of a circle with radius r is
 A(r) = πr  2

and the function for the volume of a sphere with radius r is

 V(r) =   4 __ 3  πr   3

Both of these are examples of power functions because they consist of a coefficient, π or   4 _ 3  π, multiplied by a variable 
r raised to a power.

power function 
A power function is a function that can be represented in the form

f (x) = kxp

where k and p are real numbers, and k is known as the coefficient.
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Q & A…
Is f (x) = 2x a power function?
No. A power function contains a variable base raised to a fixed power. This function has a constant base raised to a 
variable power. This is called an exponential function, not a power function.

Example 1 Identifying Power Functions

Which of the following functions are power functions?
 f (x) = 1 Constant function 

 f (x) = x Identify function
 f (x) = x 2 Quadratic function
 f (x) = x 3 Cubic function
 f (x) =   1 __ x Reciprocal function

 f (x) =   1 __ x2   Reciprocal squared function

 f (x) =  √—
 x   Square root function

 f (x) =   3 √—
 x    Cube root function

Solution All of the listed functions are power functions.
The constant and identity functions are power functions because they can be written as f (x) = x0 and f (x) = x1 
respectively.
The quadratic and cubic functions are power functions with whole number powers f (x) = x 2 and f (x) = x 3.
Th  reciprocal and reciprocal squared functions are power functions with negative whole number powers because they 
can be written as f (x) = x −1 and f (x) = x −2.
The square and cube root functions are power functions with fractional powers because they can be written as 
f (x) = x1/2 or f (x) = x 1/3.

Try It #1
Which functions are power functions? 

f (x) = 2x 2 ⋅ 4x 3    g(x) = −x 5 + 5x  3    h(x) =   2x5 − 1 _ 
3x2 + 4

  

Identifying end behavior of Power Functions
Figure 2 shows the graphs of f (x) = x  2, g(x) = x  4 and h(x) = x  6, which are all power functions with even, whole-number 
powers. Notice that these graphs have similar shapes, very much like that of the quadratic function in the toolkit. 
However, as the power increases, the graphs flatten somewhat near the origin and become steeper away from the origin.
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Figure 2 even-power functions
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To describe the behavior as numbers become larger and larger, we use the idea of infinity. We use the symbol ∞ for positive 
infinity and −∞ for negative infinity. When we say that “x approaches infinity,” which can be symbolically written as  
x → ∞, we are describing a behavior; we are saying that x is increasing without bound.
With the positive even-power function, as the input increases or decreases without bound, the output values become 
very large, positive numbers. Equivalently, we could describe this behavior by saying that as x approaches positive or 
negative infinity, the f (x) values increase without bound. In symbolic form, we could write

as x → ±∞, f (x) → ∞
Figure 3 shows the graphs of f (x) = x 3, g(x) = x 5, and h(x) = x 7, which are all power functions with odd, whole-number 
powers. Notice that these graphs look similar to the cubic function in the toolkit. Again, as the power increases, the 
graphs flatten near the origin and become steeper away from the origin.
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Figure 3 Odd-power functions

These examples illustrate that functions of the form f (x) = xn reveal symmetry of one kind or another. First, in Figure 
2 we see that even functions of the form f (x) = xn, n even, are symmetric about the y-axis. In Figure 3 we see that odd 
functions of the form f (x) = xn, n odd, are symmetric about the origin.
For these odd power functions, as x approaches negative infinity, f (x) decreases without bound. As x approaches 
positive infinity, f (x) increases without bound. In symbolic form we write

    as x → −∞, f (x) → −∞    as x → ∞,    f (x) → ∞
The behavior of the graph of a function as the input values get very small (x → −∞) and get very large (x → ∞) is 
referred to as the end behavior of the function. We can use words or symbols to describe end behavior.
Figure 4 shows the end behavior of power functions in the form f (x) = kxn where n is a non-negative integer depending 
on the power and the constant.
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Figure 4



SECTION 5.2 Power fuNctioNs ANd PolyNomiAl fuNctioNs 363

How To…
Given a power function f (x) = kx n where n is a non-negative integer, identify the end behavior.
1. Determine whether the power is even or odd.
2. Determine whether the constant is positive or negative.
3. Use Figure 4 to identify the end behavior.

Example 2 Identifying the End Behavior of a Power Function

Describe the end behavior of the graph of f (x) = x8.
Solution The coefficient is 1 (positive) and the exponent of the power function is 8 (an even number). As x approaches 
infinity, the output (value of f (x)) increases without bound. We write as x → ∞, f (x) → ∞. As x approaches negative 
infinity, the output increases without bound. In symbolic form, as x → −∞, f (x) → ∞. We can graphically represent 
the function as shown in Figure 5.
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Example 3 Identifying the End Behavior of a Power Function

Describe the end behavior of the graph of f (x) = −x  9.
Solution The exponent of the power function is 9 (an odd number). Because the coefficient is −1 (negative), the graph 
is the reflection about the x-axis of the graph of f (x) = x 9. Figure 6 shows that as x approaches infinity, the output 
decreases without bound. As x approaches negative infinity, the output increases without bound. In symbolic form, 
we would write

as x → −∞, f (x) → ∞
   as x → ∞,     f (x) → −∞
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Analysi s We can check our work by using the table feature on a graphing utility.

x f  (x)
−10 1,000,000,000
−5 1,953,125

0 0
5 −1,953,125

10 −1,000,000,000

Table 2

We can see from Table 2 that, when we substitute very small values for x, the output is very large, and when we substitute 
very large values for x, the output is very small (meaning that it is a very large negative value).

Try It #2
Describe in words and symbols the end behavior of f (x) = −5x 4.

Identifying Polynomial Functions
An oil pipeline bursts in the Gulf of Mexico, causing an oil slick in a roughly circular shape. The slick is currently  
24 miles in radius, but that radius is increasing by 8 miles each week. We want to write a formula for the area covered 
by the oil slick by combining two functions. The radius r of the spill depends on the number of weeks w that have 
passed. This relationship is linear.

r(w) = 24 + 8w
We can combine this with the formula for the area A of a circle.
 A(r) = πr 2

Composing these functions gives a formula for the area in terms of weeks.
 A(w) = A(r(w))
 = A(24 + 8w)
 = π(24 + 8w)2

Multiplying gives the formula.
 A(w) = 576π + 384πw + 64πw 2

This formula is an example of a polynomial function. A polynomial function consists of either zero or the sum of 
a finite number of non-zero terms, each of which is a product of a number, called the coefficient of the term, and a 
variable raised to a non-negative integer power.

polynomial functions 
Let n be a non-negative integer. A polynomial function is a function that can be written in the form

f  (x) = an x n + ... + a2 x 2 + a1 x + a0

This is called the general form of a polynomial function. Each ai is a coefficient and can be any real, but an cannot 
= 0. Each expression ai   x i is a term of a polynomial function.

Example 4 Identifying Polynomial Functions

Which of the following are polynomial functions?
f (x) = 2x 3 ⋅ 3x + 4  g(x) = −x(x2 − 4)  h(x) = 5 √— x + 2  

Solution The first two functions are examples of polynomial functions because they can be written in the form  
f (x) = an xn + ... + a2 x2 + a1 x + a0, where the powers are non-negative integers and the coefficients are real numbers. 
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•	 f (x) can be written as f (x) = 6x4 + 4.

•	 g(x) can be written as g(x) = −x3 + 4x.

•	 h(x) cannot be written in this form and is therefore not a polynomial function.

Identifying the degree and leading Coefficient of a Polynomial Function
Because of the form of a polynomial function, we can see an infinite variety in the number of terms and the power of 
the variable. Although the order of the terms in the polynomial function is not important for performing operations, 
we typically arrange the terms in descending order of power, or in general form. The degree of the polynomial is the 
highest power of the variable that occurs in the polynomial; it is the power of the first variable if the function is in 
general form. The leading term is the term containing the highest power of the variable, or the term with the highest 
degree. The leading coefficient is the coefficient of the leading term.

terminology of polynomial functions 
We often rearrange polynomials so that the powers are descending.

Leading coefficient Degree

f (x) = an  x n + … + a2  x 2 + a1x + a0

Leading term

When a polynomial is written in this way, we say that it is in general form.

How To…
Given a polynomial function, identify the degree and leading coefficient.
1. Find the highest power of x to determine the degree function.
2. Identify the term containing the highest power of x to find the leading term.
3. Identify the coefficient of the leading term.

Example 5  Identifying the Degree and Leading Coefficient of a Polynomial Function

Identify the degree, leading term, and leading coefficient of the following polynomial functions.
f (x) = 3 + 2x 2 − 4x 3

 g(t) = 5t 5 − 2t 3 + 7t
 h(p) = 6p − p 3 − 2

Solution For the function f (x), the highest power of x is 3, so the degree is 3. The leading term is the term containing 
that degree, −4x3. The leading coefficient is the coefficient of that term, −4.
For the function g(t), the highest power of t is 5, so the degree is 5. The leading term is the term containing that degree, 
5t5. The leading coefficient is the coefficient of that term, 5.
For the function h(p), the highest power of p is 3, so the degree is 3. The leading term is the term containing that degree,  
 −p3; the leading coefficient is the coefficient of that term, −1.

Try It #3
Identify the degree, leading term, and leading coeffici t of the polynomial f (x) = 4x 2 − x 6 + 2x − 6.
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Identifying End Behavior of Polynomial Functions

Knowing the degree of a polynomial function is useful in helping us predict its end behavior. To determine its end 
behavior, look at the leading term of the polynomial function. Because the power of the leading term is the highest, that 
term will grow significantly faster than the other terms as x gets very large or very small, so its behavior will dominate 
the graph. For any polynomial, the end behavior of the polynomial will match the end behavior of the power function 
consisting of the leading term. See Table 3.

Polynomial Function Leading Term Graph of Polynomial Function

f (x) = 5x4 + 2x3 − x − 4 5x4
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f (x) = 3x5 − 4x4 + 2x2 + 1 3x5
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f (x) = −6x3 + 7x2 + 3x + 1 −6x3
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Example 6 Identifying End Behavior and Degree of a Polynomial Function

Describe the end behavior and determine a possible degree of the polynomial function in Figure 7.
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Solution As the input values x get very large, the output values f (x) increase without bound. As the input values x get 
very small, the output values f (x) decrease without bound. We can describe the end behavior symbolically by writing

    as x → −∞, f (x) → −∞
as x → ∞,    f (x) → ∞

In words, we could say that as x values approach infinity, the function values approach infinity, and as x values 
approach negative infinity, the function values approach negative infinity.
We can tell this graph has the shape of an odd degree power function that has not been reflected, so the degree of the 
polynomial creating this graph must be odd and the leading coefficient must be positive.

Try It #4

Describe the end behavior, and determine a possible degree of the 
polynomial function in Figure 8. 2
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Figure 8  

Example 7 Identifying End Behavior and Degree of a Polynomial Function

Given the function f (x) = −3x2(x − 1)(x + 4), express the function as a polynomial in general form, and determine 
the leading term, degree, and end behavior of the function.
Solution Obtain the general form by expanding the given expression for f (x).
 f (x) = −3x2(x − 1)(x + 4)
 = −3x2(x2 + 3x − 4)
 = −3x4 − 9x3 + 12x2

The general form is f (x) = −3x4 − 9x3 + 12x2. The leading term is −3x4; therefore, the degree of the polynomial is 4. 
The degree is even (4) and the leading coefficient is negative (−3), so the end behavior is

as x → −∞, f (x) → −∞
as x → ∞,    f (x) → −∞
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Try It #5
Given the function f (x) = 0.2(x − 2)(x + 1)(x − 5), express the function as a polynomial in general form and 
determine the leading term, degree, and end behavior of the function.

Identifying Local Behavior of Polynomial Functions

In addition to the end behavior of polynomial functions, we are also interested in what happens in the “middle” of 
the function. In particular, we are interested in locations where graph behavior changes. A turning point is a point 
at which the function values change from increasing to decreasing or decreasing to increasing.
We are also interested in the intercepts. As with all functions, the y-intercept is the point at which the graph 
intersects the vertical axis. The point corresponds to the coordinate pair in which the input value is zero. Because a 
polynomial is a function, only one output value corresponds to each input value so there can be only one y-intercept  
(0, a0). The x-intercepts occur at the input values that correspond to an output value of zero. It is possible to have more 
than one x-intercept. See Figure 9.
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←y-intercept

Turning point

Turning 
point

x

y

Figure 9

intercepts and turning points of polynomial functions 
A turning point of a graph is a point at which the graph changes direction from increasing to decreasing or 
decreasing to increasing. The y-intercept is the point at which the function has an input value of zero. The 
x-intercepts are the points at which the output value is zero.

How To…
Given a polynomial function, determine the intercepts.
1. Determine the y-intercept by setting x = 0 and finding the corresponding output value.
2. Determine the x-intercepts by solving for the input values that yield an output value of zero.

Example 8 Determining the Intercepts of a Polynomial Function

Given the polynomial function f (x) = (x − 2)(x + 1)(x − 4), written in factored form for your convenience, determine 
the y- and x-intercepts.
Solution Th  y-intercept occurs when the input is zero so substitute 0 for x.

f (0) = (0 − 2)(0 + 1)(0 − 4)
= (−2)(1)(− 4)
= 8

Th  y-intercept is (0, 8).
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Th  x-intercepts occur when the output is zero.
 0 = (x − 2)(x + 1)(x − 4)
 x − 2 = 0 or x + 1 = 0      or x − 4 = 0
 x = 2 or     x = −1 or      x = 4 
Th  x-intercepts are (2, 0), (–1, 0), and (4, 0).
We can see these intercepts on the graph of the function shown in Figure 10.
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Example 9  Determining the Intercepts of a Polynomial Function with Factoring

Given the polynomial function f (x) = x4 − 4x2 − 45, determine the y- and x-intercepts.
Solution Th  y-intercept occurs when the input is zero.
 f (0) = (0)4 − 4(0)2 − 45
 = −45
Th  y-intercept is (0, −45).
Th  x-intercepts occur when the output is zero. To determine when the output is zero, we will need to factor the 
polynomial.
 f (x) = x4 − 4x2 − 45
 = (x2 − 9)(x2 + 5)
 = (x − 3)(x + 3)(x2 + 5)
 0 = (x − 3)(x + 3)(x2 + 5)
 x − 3 = 0 or x + 3 = 0   or x2 + 5 = 0
 x = 3 or      x = −3 or (no real solution)
Th  x-intercepts are (3, 0) and (−3, 0).
We can see these intercepts on the graph of the function shown in Figure 11. We can see that the function is even 
because f (x) = f (−x).
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Try It #6
Given the polynomial function f (x) = 2x3 − 6x2 − 20x, determine the y- and x-intercepts.
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Comparing Smooth and Continuous Graphs

The degree of a polynomial function helps us to determine the number of x-intercepts and the number of turning 
points. A polynomial function of nth degree is the product of n factors, so it will have at most n roots or zeros, or 
x-intercepts. The graph of the polynomial function of degree n must have at most n − 1 turning points. This means the 
graph has at most one fewer turning point than the degree of the polynomial or one fewer than the number of factors.
A continuous function has no breaks in its graph: the graph can be drawn without lifting the pen from the paper. 
A smooth curve is a graph that has no sharp corners. The turning points of a smooth graph must always occur at 
rounded curves. The graphs of polynomial functions are both continuous and smooth.

intercepts and turning points of polynomials 
A polynomial of degree n will have, at most, n x-intercepts and n − 1 turning points.

Example 10 Determining the Number of Intercepts and Turning Points of a Polynomial

Without graphing the function, determine the local behavior of the function by finding the maximum number of 
x-intercepts and turning points for f (x) = −3x 10 + 4x 7 − x 4 + 2x 3.
Solution The polynomial has a degree of 10, so there are at most 10 x-intercepts and at most 9 turning points.

Try It #7
Without graphing the function, determine the maximum number of x-intercepts and turning points for  
f (x) = 108 − 13x9 − 8x4 + 14x12 + 2x3

Example 11 Drawing Conclusions about a Polynomial Function from the Graph

What can we conclude about the polynomial represented by the graph shown in Figure 12 based on its intercepts and 
turning points?
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Solution The end behavior of the graph tells us this is the graph of an even-degree polynomial. See Figure 13.
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The graph has 2 x-intercepts, suggesting a degree of 2 or greater, and 3 turning points, suggesting a degree of 4 or 
greater. Based on this, it would be reasonable to conclude that the degree is even and at least 4.
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Try It #8
What can we conclude about the polynomial represented by the graph shown in Figure 14 based on its intercepts 
and turning points?
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Example 12  Drawing Conclusions about a Polynomial Function from the Factors

Given the function f (x) = −4x(x + 3)(x − 4), determine the local behavior.
Solution Th  y-intercept is found by evaluating f (0).
 f (0) = −4(0)(0 + 3)(0 − 4)
 = 0
Th  y-intercept is (0, 0).
Th  x-intercepts are found by determining the zeros of the function.
 0 = −4x(x + 3)(x − 4)
 x = 0 or x + 3 = 0       or x − 4 = 0
 x = 0 or      x = −3 or   x = 4
Th  x-intercepts are (0, 0), (−3, 0), and (4, 0).
The degree is 3 so the graph has at most 2 turning points.

Try It #9
Given the function f (x) = 0.2(x − 2)(x + 1)(x − 5), determine the local behavior.

Access these online resources for additional instruction and practice with power and polynomial functions.

•	 Find Key Information About a given Polynomial Function (http://openstaxcollege.org/l/keyinfopoly)

•	 end behavior of a Polynomial Function (http://openstaxcollege.org/l/endbehavior)

•	 Turning Points and x-intercepts of Polynomial Functions (http://openstaxcollege.org/l/turningpoints)

•	 least Possible degree of a Polynomial Function (http://openstaxcollege.org/l/leastposdegree)
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5.2 SeCTIOn exeRCISeS

veRbAl

1. Explain the difference between the coeffici t  
of a power function and its degree.

2. If a polynomial function is in factored form, what 
would be a good fi st step in order to determine the 
degree of the function?

3. In general, explain the end behavior of a power 
function with odd degree if the leading coeffici t is 
positive.

4. What is the relationship between the degree of a 
polynomial function and the maximum number  
of turning points in its graph?

5. What can we conclude if, in general, the graph of a  
polynomial function exhibits the following end 
behavior? As x → −∞, f (x) → −∞ and as x → ∞,  
f (x) → −∞.

AlgebRAIC

For the following exercises, identify the function as a power function, a polynomial function, or neither.

6. f (x) = x5 7. f (x) = (x2)3 8. f (x) = x − x4

9. f (x) = x2
 _____ x2 − 1  10. f (x) = 2x(x + 2)(x − 1)2 11. f (x) = 3x + 1

For the following exercises, find the degree and leading coefficient for the given polynomial.
12.  −3x 13. 7 − 2x2 14.  −2x2 − 3x5 + x − 6

15. x(4 − x2)(2x + 1) 16. x 2 (2x − 3)2

For the following exercises, determine the end behavior of the functions.

17. f (x) = x4 18. f (x) = x3 19. f (x) = −x4

20. f (x) = −x9 21. f (x) = −2x4 − 3x2 + x − 1 22. f (x) = 3x2 + x − 2

23. f (x) = x2(2x3 − x + 1) 24. f (x) = (2 − x)7

For the following exercises, find the intercepts of the functions.
25. f (t) = 2(t − 1)(t + 2)(t − 3) 26. g(n) = −2(3n − 1)(2n + 1) 27. f (x) = x4 − 16

28. f (x) = x3 + 27 29. f (x) = x(x2 − 2x − 8) 30. f (x) = (x + 3)(4x2 − 1)

gRAPhICAl

For the following exercises, determine the least possible degree of the polynomial function shown.

31. 

2

x

y

–1–1

–2

–2

–3

–3

–4

–4

–5

–5

1

3

3

21 4

4

5

5

32. 

2

x

y

–1–1

–2

–2

–3

–3

–4

–4

–5

–5

1

3

3

21 4

4

5

5

33. 

2

x

y

–1–1

–2

–2

–3

–3

–4

–4

–5

–5

1

3

3

21 4

4

5

5
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34. 

2

x

y

–1–1

–2

–2

–3

–3

–4

–4

–5

–5

1

3

3

21 4

4

5

5

35. 

2

x

y

–1–1

–2

–2

–3

–3

–4

–4

–5

–5

1

3

3

21 4

4

5

5

36. 

2

x

y

–1–1

–2

–2

–3

–3

–4

–4

–5

–5

1

3

3

21 4

4

5

5

37. 

2

x

y

–1–1

–2

–2

–3

–3

–4

–4

–5
–6

–5

1

3

3

21 4

4

5

5
6

38. 

2

x

y

–1–1

–2

–2

–3

–3

–4

–4

–5

–5

1

3

3

21 4

4

5

5
6

For the following exercises, determine whether the graph of the function provided is a graph of a polynomial function.  
If so, determine the number of turning points and the least possible degree for the function.

39. 

x

y
40. 

x

y
41. 

x

y
42. 

x

y

43. 

x

y
44. 

x

y
45. 

x

y
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nUmeRIC

For the following exercises, make a table to confirm the end behavior of the function.
46. f (x) = −x3 47. f (x) = x4 − 5x2 48. f (x) = x2(1 − x)2

49. f (x) = (x − 1)(x − 2)(3 − x) 50. f (x) =   x
5
 __ 10   − x4

TeChnOlOgy

For the following exercises, graph the polynomial functions using a calculator. Based on the graph, determine  
the intercepts and the end behavior.

51. f (x) = x3(x − 2) 52. f (x) = x(x − 3)(x + 3) 53. f (x) = x(14 − 2x)(10 − 2x)

54. f (x) = x(14 − 2x)(10 − 2x)2 55. f (x) = x3 − 16x 56. f (x) = x3 − 27

57. f (x) = x4 − 81 58. f (x) = −x3 + x2 + 2x 59. f (x) = x3 − 2x2 − 15x

60. f (x) = x3 − 0.01x

exTenSIOnS

For the following exercises, use the information about the graph of a polynomial function to determine the function. 
Assume the leading coefficient is 1 or −1. There may be more than one correct answer.

61. Th  y-intercept is (0, −4). The x-intercepts are (−2, 0), 
 (2, 0). Degree is 2. End behavior: as x → −∞,  
f (x) → ∞, as x → ∞, f (x) → ∞.

62. Th  y-intercept is (0, 9). The x-intercepts are (−3, 0), 
(3, 0). Degree is 2. End behavior: as x → −∞,  
f (x) → −∞, as x → ∞, f (x) → −∞.

63. Th  y-intercept is (0, 0). The x-intercepts are (0, 0),  
(2, 0). Degree is 3. End behavior: as x → −∞,  
f (x) → −∞, as x → ∞, f (x) → ∞.

64. Th  y-intercept is (0, 1). The x-intercept is (1, 0). 
Degree is 3. End behavior: as x → −∞, f (x) → ∞, as  
x → ∞, f (x) → −∞.

65. Th  y-intercept is (0, 1). There is no x-intercept.  
Degree is 4. End behavior: as x → −∞, f (x) → ∞, as  
x → ∞, f (x) → ∞.

ReAl-WORld APPlICATIOnS

For the following exercises, use the written statements to construct a polynomial function that represents the required 
information.

66. An oil slick is expanding as a circle. The radius of 
the circle is increasing at the rate of 20 meters per 
day. Express the area of the circle as a function of d, 
the number of days elapsed.

67.  A cube has an edge of 3 feet. The edge is increasing 
at the rate of 2 feet per minute. Express the volume 
of the cube as a function of m, the number of 
minutes elapsed.

68. A rectangle has a length of 10 inches and a width of  
6 inches. If the length is increased by x inches and 
the width increased by twice that amount, express 
the area of the rectangle as a function of x.

69.  An open box is to be constructed by cutting out 
square corners of x-inch sides from a piece of 
cardboard 8 inches by 8 inches and then folding 
up the sides. Express the volume of the box as a 
function of x.

70. A rectangle is twice as long as it is wide. Squares of 
side 2 feet are cut out from each corner. Then the 
sides are folded up to make an open box. Express the 
volume of the box as a function of the width (x).


