
0.1 Applications of

Exponential and Log

Functions

Growth

If the rate of population change is positive and

directly related to the present population, we

have exponential growth. (If change is nega-

tive, we have exponential decay which we will

examine separately.)

y = y0e
kt

It is possible�and sometimes practical�to use

other exponential bases besides e, yet this

equation y = y0e
kt has the attractive prop-

erty of being the simplest form of an equation

for some common problems.

Annual Compound Interest

�The rich get richer� or �the more you have

the more you make� is compound interest ex-

plained in plain English. In contrast to com-

pound interest, simple interest only applies to

the principle.

A $1000 saving share earning simple interest

of 5% per year would earn 5% of $1000 or $50

per year. Simple interest is, well, simple. The

$1000 would earn $50 each year, year after

year. In 20 years, $1000 at 5% simple interest

would earn $1000. Does anyone actually do

this? Not really in the sense that the interest

would be ignored for 20 years to only end up

with $2000.

In reality, interest is reinvested as it is earned

thus earning compound interest. If one earns

5% interest per year compounded annually,

the initial investment of $1000 would become

$1000 + $50 = $1050 after the �rst year.

Then, 5% of $1050 is $52.50, and we would

have $1050 + $52.50 = $1102.50 after the

seond year. The shortcut formula for this type

of problem is

A = P (1 + r)t

where P is the principal or initial investment,

r is the annual interest rate as a decimal, t

the number of years of investment, and A is

the amount earned after t years. For our ini-

tial investment of $1000 at 5% annual interest

compounded 1 time pear year for 20 years, we

would get A = 1000(1 + .05)20 = $2653.29.

Compound Interest

For compounding of interest more often than

once per year, we have

A = P
(
1 +

r

k

)kt

A = amount after t years

P = principal, the amount invested at time t

= 0

t = time elapsed in years

r = annual percentage rate (APR) as a decimal

k = number of compounding periods per year

Example Suppose that we invest $1000 at 5%

APR for 20 years, as above, but consider

di�erent compounding periods.

quarterly (k=4):

A = 1000

(
1 +

.04

4

)4·120

= 1000(1.01)80

= $2216.72

monthly (k=12):

A = 1000(

(
1 +

.04

12

)12·20

= $2222.58

daily (k=365):

A = 1000

(
1 +

.04

365

)365·20

= $2225.44

hourly (k=365*24=8760):

A = 1000

(
1 +

.04

8760

)8760·20

= $2225.54

every minute (k=365*24*60=525600):

A = 1000

(
1 +

.04

525600

)525600·20

= $2225.54
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There was actually a slight di�erence between

the calculation for hourly and every-minute

compounding of interest, but the di�erence

was less than half a cent and did not show

up when we rounded to the closest penny.

Continuous Compounding of Interest

If compunding is done continuously, that is

in�nitely many times per second, then we have

A = Pert

Example Suppose that we invest $1000 at

5% APR for 20 years, as above, but we

compound the interest continuously.

A = 1000e.04(20) = $2225.54

This �gure is slightly greater than per-

minute compounding, but very close.

Example How long will it take $1000 at 4%

APR, compounded continuously, to grow

to $2000 ?

We need to solve the equation for t.

2000 = 1000e.04t

First, divide by 1000 on both sides to

leave e.04t alone on the right side.

2000

1000
=

1000e.04t

1000
2 = e.04t

The trick is to log both sides of the

equation, and here we use the natural

log because of the convenient identity

ln ex = x.

ln 2 = ln e.04t

ln 2 = .04t
ln 2

.04
= t

t ≈ 17.33 years

Example What interest rate is needed for

$5000 to grow to $20,000 in 22 years?

20000 = 5000er22

20000

5000
= e22r

4 = e22r

ln 4 = 22r

r =
ln 4

22
≈ .063 = 6.3%

Radioactive Decay

A radioactive isotope of an element decays in

proportion to the amount. Its rate of decay

is often expressed as its half life, the time

required for half of the radioactive isotope to

decay. Half lives of elements variy between

4.5 billion years for U238(Uranium 238) to

Mg34(Magnesium 34) with a half life of 20

milliseconds.

The convenient form of the decay equation is

y = y0e
kt

y = amount after t years

yo= amount when t = 0

t = time elapsed, units vary from years to mi-

croseconds

k = the decay constant for the particular iso-

tope

The decay constant k is calculated as

k =
ln .5

half − life

For U238, k =
ln .5

4.5
= −.1540

For Mg34, k =
ln .5

20
= −.03466

Note the di�erence in units, between billions

of years for U238 and milliseconds for Mg34.

Example How much of 1 kg of U238 will be

left after 2 billion years?

We already found that k = -.1540, so

y = 1e−.1540(2) = .735 kg

Example Au195(Gold 195) has a half life of

186.09 days. How long till a .74 oz gold

coin of Au195decays till there is only .05

oz of gold left?

First, �nd k: k =
ln .5

186.09
= −.003725

Then, solve the decay equation for t:

y = y0e
kt

.05 = .74e−.003725t
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.05

.74
= e−.003725t

.06757 = e−.003725t

ln .06757 = −.003725t

t =
ln .06757

−.003725
= 723.38 days

Exercises

1. How long till $1000 invested at 5%

APR, compounded continuously, grows to

$2500 ?

2. At what interest rate will $5000 grow to

$10,000 in 18 years?

3. How long till 3 mg of iodine 131 decays

to 1 mg? Its half life is 8.07 days.

4. How long till a 350% level of Radon 222

decay below 100%. Here, 100% is the

maximum safe level. Its half life is 3.82

days.
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