0.1 Completing the Square

Recall the perfect square formulas

$$(p+q)^2 = p^2 + 2pq + q^2$$

 $(p-q)^2 = p^2 - 2pq + q^2$

We want to turn trinomials of the form $Ax^2 + Bx + C$ into perfect squares, but, to simplify matters, we always want to factor out the coefficient of the Ax^2 term and work on the simpler trinomial

$$x^2 + bx + c$$

This is not usually a perfect square, but, it turns out that we can always add or subtract a number to $x^2 + bx + c$ so that we do have a perfect square. Consider the equation

$$x^2 + bx + c = 0$$

It is usually easiest to add the opposite of c to both sides, then figure out the number needed to make the perfect square on the left.

$$x^{2} + bx + c = 0$$

$$-c -c$$

$$x^{2} + bx = -c$$

At this point, the number needed is $\left(\frac{b}{2}\right)^2$ which we add to both sides.

$$x^{2} + bx + \frac{b^{2}}{4} = -c + \frac{b^{2}}{4}$$
$$(x + \frac{b}{2})^{2} = -c + \frac{b^{2}}{4}$$

This process works easiest when b is an even number, and this is the case we will focus on.

Example Complete the square to solve $x^2 + 6x + 5 = 0$

$$\begin{array}{rcl}
x^2 + 6x + 5 & = & 0 \\
 & -5 & -5 \\
\hline
x^2 + 6x & = & -5
\end{array}$$

Here b = 6, so
$$\left(\frac{b}{2}\right)^2 = \left(\frac{6}{2}\right)^2 = 3^2 = 9$$
, and then we add 9 to both sides to obtain

a perfect square on the left side.

$$x^{2} + 6x = -5$$

$$9 9$$

$$x^{2} + 6x + 9 = 4$$

$$(x+3)^{2} = 4$$

At this point, we can take the square root of both sides, then solve for x. Note the \pm put in front of the radical on the right side.

$$(x+3)^2 = 4$$

$$x+3 = \pm\sqrt{4}$$

$$x+3 = \pm 2$$

$$-3 = -3$$

$$x = -3 \pm 2$$

Thus, our solutions are -3 ± 2 which means the solution set $\{-3+2, -3-2\} = \{-1, -5\}.$

Example Solve $x^{2} - 8x + 1 = 0$.

$$x^{2} + 8x + 1 = 0$$

$$-1 -1$$

$$x^{2} + 8x = -1$$

$$x^{2} + 8x + \left(\frac{8}{2}\right)^{2} = -1 + \left(\frac{8}{2}\right)^{2}$$

$$x^{2} + 8x + 16 = 15$$

$$(x+4)^{2} = 15$$

$$x+4 = \pm\sqrt{15}$$

$$-4 -4$$

$$x = -4 \pm\sqrt{15}$$

Exercises

Solve each of the following by completing the square.

1.
$$x^2 - 6x - 1 = 0$$

$$2. x^2 + 24x + 101 = 0$$

3.
$$x^2 + 3x + 1 = 0$$

4.
$$x^2 - 4x + 1 = 0$$

$$5. \ x^2 + 6x + 20 = 0$$

6.
$$x^2 - 8x - 2 = 0$$