0.1 Division of Polynomials

Just as multiplication of polynomials is simi-
lar to ordinary multiplication of integers, divi-
sion of polynomials is similar to long division
of integers with a remainder but without bor-
rowing. Recall the process of dividing 106 by

In long division, one does not have to know
how many times the divisor goes into the div-
idend (dividend = thing being divided). One
can look at a digit or group of digits at a time,
repeatedly subtracting, until the remiander is
less than the divisor.

Polynomial division is actually quite a bit
more straightforward because there is no
guessing and no borrowing during subtraction.

Consider the problem (222 — 3z +5) + (z —3),
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The ratio of the leading terms is — = 2z.
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Put the 2z in the correct column for the quo-
tient, and subtract 2z(z — 3) = 222 — 6.
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3. Put 3 in the correct quotient coumn, and
subtract 3(z — 3) =3z — 9.
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There are two ways to write the results from
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Another method for expressing the result from
division is also useful, and it is called The Di-
vision Algorithm. It is sometimes handy to
label the dividend polynomial as p(x), the di-
visor as d(x), the quotient as q(x), and the
remainder as r(x).

Dividend =

p(x) = q(x)- d(z)+r(z)
In this form, 106 = 15-7+1, and 222 —3z+5 =
2z +3)(x — 3) + 14.

Synthetic Division

In the above problem, there were redundant
steps in carrying out (222 — 3z +5) + (x — 3).
The leading term in the dividend is always
eliminated, and there is always a single sub-
traction. These steps can be condensed into a
matter of multiplying and adding in this fash-
ion.

Consider a polynomial
(ana™ + an12" 4 asx® + arz + ag) +
(x —r). Write down the coefficients in this
fashion.
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The process is started by carrying the leading
coefficient a,to the bottom. Then, multiply
r - apand put this product in the second row
below the next term and subtract putting the
result in the bottom row. Continue this pro-
cess until there is a number in the bottom row
to the far right—which is the remainder. The
other numbers in the second row form the co-
efficients of the quotient. This process is prob-
ably easier to show than to describe generally.



Example Divide (22° — 3z + 5) + (z — 3)
using synthetic division.
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The number in the brackets, 14, is the
remainder. The quotient is one degree
less than the dividend 2z? — 32 + 5,
and its coefficients are 2 and 3, so the
quotient is 2x + 3. The answer can be
expressed in two ways.
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Exercises

Divide (with remainder) by hand showing your

steps. Put your answer in the form

remainder
dividend = quotient + ——
divisor

1. 315+ 23
2. (522 —4a+9) = (z +2)
3. (P42 20 +3) = (x+1)
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Divide using synthetic division. Put your an-

swers in the form '

o ) remainder
dividend = quotient + ——
divisor
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(2% +32% —da +5) + (z— 1)
7. (22° +42° —2—5) =+ (2 +2)
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