6.2 Evaluation of Polynomials

For a polynomial p(x), evaluation at a particular number means replacing the variable with the number then calculating the result.

Example For
$$p(x) = 2x^2 + 3x - 7$$
, find p(4). $p(4) = 2(4)^2 + 3(4) - 7 = 32 + 12 - 7 = 44 - 7 = 37$.

When evaluating a polynomial for negative numbers, parenthesis are helpful to avoid errors of sign.

Example For
$$g(x) = x^3 - 5x^2 + 6x - 5$$
, find $g(-2)$. $g(-2) = (-2)^3 - 5(-2)^2 + 6(-2) - 5 = -8-20-12-5 = -28-12-5 = -40-5 = -45$.

Exercises

1. For
$$p(x) = 3x^2 - 6x + 10$$
, $p(-2) =$

2. For
$$f(x) = x^3 + x^2 + x - 1$$
, $f(2) =$

3. For
$$g(x) = x^4 - x - 1$$
, $g(3) =$

4. For
$$h(x) = 41.2x^2 + 26.9x + 13.1$$
, $h(3.05)$

5. For
$$f(x) = 3x^2 - 5x + 6$$
 and $g(x) = -x^3 + 8x - 12$, find $h(x) = f(x) - g(x)$.

6. Simplify:
$$(2x^2 - 5x + 9) + (4x^2 + x + 3)$$

7. Simplify:
$$(3x-1) - (4x^2 - 5x - 10)$$

8. Simplify:
$$(3x^3 - 6x^2 + 5x + 4)$$
- $(2x^2 - 3x + 10)$

- 9. If f(x) is a fourth degree polynomial and g(x) is a second degree polynomial, what is the degree of the polynomial Q(x) where Q(x) = f(x) + g(x)?
- 10. Create a 7th degree polynomial with 5 terms.