2.6 Absolute Value Equations and Inequalities

The way to take the absolute value of a number is to make the number positive if it is negative or, otherwise, write down the number.

$$|-3| = 3$$
$$|3| = 3$$

This is fine because we know whether a number os negative or not. With absolute value equations, we are being asked the question: What number can we replace the variable with to make the equation true? For the equation |x|=3, we see above that x could be 3 or 3 because |3|=3 and |-3|=3. This is the case for absolute value equations where the absolute value of some linear expression in one variable is equal to a positive number; there will be two equations to solve.

$$\begin{aligned} |\heartsuit| &= D \\ \heartsuit &= D \\ & \heartsuit &= -D \end{aligned}$$

Example Solve |x+6|=2.

There are two separate linear equations to solve:

$$x+6 = 2$$

$$-6 -6$$

$$x = -4$$

$$x+6 = -2-6$$

$$-6 \text{height}$$

$$x = -8$$

Since -4 and -8 are two solutions, we express the solution set: $\{-4, -8\}$.

There are two special cases to consider.

- 1. If we have the case $|\heartsuit| = 0$, we simply solve the equation $\heartsuit = 0$.
- 2. If we have the case $|\heartsuit| = Negative\ Number$, the solution set is empty or \varnothing .

Example Solve |2x + 7| = 0.

$$2x + 7 = 0$$

$$-7 - 7$$

$$2x = -7$$

$$\frac{2x}{2} = \frac{-7}{2}$$

$$x = \frac{-7}{2}$$

Example Solve $|3x + 5| \le 4$

This means that 3x + 4 is within 4 units of the origin.

of the origin.
$$\begin{array}{c|c}
-4 < 3x + 5 < 4 \\
\hline
-4 & 0 & 4
\end{array}$$

$$|3x + 5| \leq 4$$

Example Solve |2x+1| > 5

This means that 2x + 1 is over 5 units away from the origin, greater than 5 OR less than -5.

$$2x+1<-5 \qquad OR \qquad 2x+1>5$$

We solve each inequality separately, then we union the results because either is a solution.

Exercises Solve the following.

1.
$$|x+4|=10$$

$$|3-x|=1$$

$$3. |5-2x|=7$$

- 4. |2x+5|=17
- 5. |4 3x| = 10
- 6. $|x+3| \le 9$
- 7. $|2x 1| \le 5$
- 8. 5 + |3 2x| < 12
- 9. |x+4| > 6
- 10. $|3 x| \ge 1$
- 11. |2x 3| > 3