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leARnIng ObjeCTIveS

In this section, you will:

•	  Model exponential growth and decay.

•	  Use Newton’s Law of Cooling.

•	  Use logistic-growth models.

•	  Choose an appropriate model for data.

•	  Express an exponential model in base e.

6. 7 exPOnenTIAl And lOgARIThmIC mOdelS

Figure 1 A nuclear research reactor inside the neely nuclear Research Center on the georgia Institute of Technology campus. (credit: georgia Tech Research Institute)

We have already explored some basic applications of exponential and logarithmic functions. In this section, we explore 
some important applications in more depth, including radioactive isotopes and Newton’s Law of Cooling.

modeling exponential growth and decay
In real-world applications, we need to model the behavior of a function. In mathematical modeling, we choose a 
familiar general function with properties that suggest that it will model the real-world phenomenon we wish to analyze. 
In the case of rapid growth, we may choose the exponential growth function:

y = A0e kt

where A0 is equal to the value at time zero, e is Euler’s constant, and k is a positive constant that determines the rate 
(percentage) of growth. We may use the exponential growth function in applications involving doubling time, the time 
it takes for a quantity to double. Such phenomena as wildlife populations, financial investments, biological samples, 
and natural resources may exhibit growth based on a doubling time. In some applications, however, as we will see 
when we discuss the logistic equation, the logistic model sometimes fits the data better than the exponential model.
On the other hand, if a quantity is falling rapidly toward zero, without ever reaching zero, then we should probably 
choose the exponential decay model. Again, we have the form y = A0e kt where A0 is the starting value, and e is Euler’s 
constant. Now k is a negative constant that determines the rate of decay. We may use the exponential decay model 
when we are calculating half-life, or the time it takes for a substance to exponentially decay to half of its original 
quantity. We use half-life in applications involving radioactive isotopes. 
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In our choice of a function to serve as a mathematical model, we often use data points gathered by careful observation 
and measurement to construct points on a graph and hope we can recognize the shape of the graph. Exponential 
growth and decay graphs have a distinctive shape, as we can see in Figure 2 and Figure 3. It is important to remember 
that, although parts of each of the two graphs seem to lie on the x-axis, they are really a tiny distance above the x-axis.
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Figure 2 A graph showing exponential  
growth. The equation is y  = 2e 3x.
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Figure 3 A graph showing exponential  
decay. The equation is y  = 3e −2x.

Exponential growth and decay often involve very large or very small numbers. To describe these numbers, we often use 
orders of magnitude. The order of magnitude is the power of ten, when the number is expressed in scientific notation,
with one digit to the left of the decimal. For example, the distance to the nearest star, Proxima Centauri, measured in 
kilometers, is 40,113,497,200,000 kilometers. Expressed in scientific notation, this is 4.01134972 × 1013. So, we could 
describe this number as having order of magnitude 1013.

characteristics of the exponential function, y = A0e kt

An exponential function with the form y = A0e kt has the following characteristics: 
•	 one-to-one function  
•	 horizontal asymptote: y = 0
•	 domain: ( –∞, ∞)
•	 range: (0, ∞)
•	 x-intercept: none
•	 y-intercept: (0, A0)
•	 increasing if k > 0 (see Figure 4)
•	 decreasing if k < 0 (see Figure 4)
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Figure 4 An exponential function models exponential growth  
when k > 0 and exponential decay when k < 0.

Example 1 Graphing Exponential Growth

A population of bacteria doubles every hour. If the culture started with 10 bacteria, graph the population as a function
of time.
Solution When an amount grows at a fixed percent per unit time, the growth is exponential. To find A0 we use the 
fact that A0 is the amount at time zero, so A0 = 10. To find k, use the fact that after one hour (t = 1) the population 
doubles from 10 to 20. The formula is derived as follows
 20 = 10e k ⋅ 1

2 = e k Divide by 10
 ln2 = k Take the natural logarithm
so k = ln(2). Thus the equation we want to graph is y = 10e(ln2)t = 10(eln2)t = 10 · 2t. The graph is shown in Figure 5.
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Figure 5 The graph of y = 10e (ln2)t.

Analysi s The population of bacteria after ten hours is 10,240. We could describe this amount is being of the order of 
magnitude 104. The population of bacteria after twenty hours is 10,485,760 which is of the order of magnitude 10 7, so we 
could say that the population has increased by three orders of magnitude in ten hours.

Half-Life

We now turn to exponential decay. One of the common terms associated with exponential decay, as stated above, is  
half-life, the length of time it takes an exponentially decaying quantity to decrease to half its original amount. Every 
radioactive isotope has a half-life, and the process describing the exponential decay of an isotope is called radioactive 
decay.
To find the half-life of a function describing exponential decay, solve the following equation:

  1 __ 2  A0 = A0e kt

We find that the half-life depends only on the constant k and not on the starting quantity A0.
The formula is derived as follows
   1 __ 2  A0 = A0e kt

   1 __ 2   = e kt Divide by A0.

 ln   1 __ 2   = kt Take the natural log.

 − ln(2) = kt Apply laws of logarithms.

 −  ln(2) ____ k = t Divide by k.

Since t, the time, is positive, k must, as expected, be negative. This gives us the half-life formula

t = −    ln(2) ____ k  

How To…
Given the half-life, find the decay rate.
1. Write A = A0 ekt.

2. Replace A by   1 _ 2  A0 and replace t by the given half-life.

3. Solve to find k. Express k as an exact value (do not round).

Note: It is also possible to find the decay rate using k = − 
ln(2) _ t  .
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Example 2 Finding the Function that Describes Radioactive Decay

The half-life of carbon-14 is 5,730 years. Express the amount of carbon-14 remaining as a function of time, t.
Solution This formula is derived as follows.

A = A0e kt The continuous growth formula.
0.5A0 = A0e k ⋅ 5730 Substitute the half-life for t and 0.5A0 for f(t).

0.5 = e5730k Divide by A0.
 ln(0.5) = 5730k Take the natural log of both sides.

k =   ln(0.5)______
5730 Divide by the coeffici t of k.

A = A0 e      
ln(0.5) ______ 5730    t  Substitute for k in the continuous growth formula.

The function that describes this continuous decay is f(t) = A0 e      
ln(0.5) ______ 5730    t . We observe that the coefficient of t,

ln(0.5) _ 5730   ≈ −1.2097 × 10−4 is negative, as expected in the case of exponential decay.

Try It #1
The half-life of plutonium-244 is 80,000,000 years. Find function gives the amount of carbon-14 remaining as a 
function of time, measured in years.

Radiocarbon Dating

The formula for radioactive decay is important in radiocarbon dating, which is used to calculate the approximate date 
a plant or animal died. Radiocarbon dating was discovered in 1949 by Willard Libb y, who won a Nobel Prize for his 
discovery. It compares the difference between the ratio of two isotopes of carbon in an organic artifact or fossil to the 
ratio of those two isotopes in the air. It is believed to be accurate to within about 1% error for plants or animals that 
died within the last 60,000 years.
Carbon-14 is a radioactive isotope of carbon that has a half-life of 5,730 years. It occurs in small quantities in the 
carbon dioxide in the air we breathe. Most of the carbon on earth is carbon-12, which has an atomic weight of 12 and 
is not radioactive. Scientists have determined the ratio of carbon-14 to carbon-12 in the air for the last 60,000 years, 
using tree rings and other organic samples of known dates—although the ratio has changed slightly over the centuries.
As long as a plant or animal is alive, the ratio of the two isotopes of carbon in its body is close to the ratio in the 
atmosphere. When it dies, the carbon-14 in its body decays and is not replaced. By comparing the ratio of carbon-14 
to carbon-12 in a decaying sample to the known ratio in the atmosphere, the date the plant or animal died can be 
approximated.
Since the half-life of carbon-14 is 5,730 years, the formula for the amount of carbon-14 remaining after t years is

A ≈ A0 e      
ln(0.5) ______ 5730    t

where
• A is the amount of carbon-14 remaining
• A0 is the amount of carbon-14 when the plant or animal began decaying.

This formula is derived as follows:
A = A0e kt The continuous growth formula.

0.5A0 = A0e k ⋅ 5730 Substitute the half-life for t and 0.5A0 for f (t).
0.5 = e5730k Divide by A0.

ln(0.5) = 5730k Take the natural log of both sides.

k =   ln(0.5)______
5730 Divide by the coeffici t of k.

A = A0 e       
ln(0.5) ______ 5730    t Substitute for r in the continuous growth formula.

To find the age of an object, we solve this equation for t:

t =    
ln    A _ A0

   
_
−0.000121
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Out of necessity, we neglect here the many details that a scientist takes into consideration when doing carbon-14 
dating, and we only look at the basic formula. The ratio of carbon-14 to carbon-12 in the atmosphere is approximately 
0.0000000001%. Let r be the ratio of carbon-14 to carbon-12 in the organic artifact or fossil to be dated, determined 
by a method called liquid scintillation. From the equation A ≈ A0e−0.000121t we know the ratio of the percentage of 
carbon-14 in the object we are dating to the percentage of carbon-14 in the atmosphere is r =   A __ A0

  ≈ e−0.000121t. We solve
this equation for t, to get

t =   ln(r) _
−0.000121

How To…
Given the percentage of carbon-14 in an object, determine its age.
1. Express the given percentage of carbon-14 as an equivalent decimal, k.
2. Substitute for k in the equation t =   ln(r) _________ 

−0.000121   and solve for the age, t.

Example 3 Finding the Age of a Bone 

A bone fragment is found that contains 20% of its original carbon-14. To the nearest year, how old is the bone?
Solution We substitute 20% = 0.20 for k in the equation and solve for t :

t =   ln(r) _
−0.000121 Use the general form of the equation.

=   ln(0.20) _
−0.000121   Substitute for r.

≈ 13301 Round to the nearest year.
The bone fragment is about 13,301 years old.
Analysi s The instruments that measure the percentage of carbon-14 are e xtremely sensitive and, as we mention above, 
a scientist will need to do much more work than we did in order to be satisfied. Even so, carbon dating is only accurate 
to about 1%, so this age should be given as 13,301 years ± 1% or 13,301 years ± 133 years.

Try It #2
Cesium-137 has a half-life of about 30 years. If we begin with 200 mg of cesium-137, will it take more or less than  
230 years until only 1 milligram remains?

Calculating Doubling Time

For decaying quantities, we determined how long it took for half of a substance to decay. For growing quantities, 
we might want to find out how long it takes for a quantity to double. As we mentioned above, the time it takes for a 
quantity to double is called the doubling time.
Given the basic exponential growth equation A = A0e kt, doubling time can be found by solving for when the original 
quantity has doubled, that is, by solving 2A0 = A0e kt.
The formula is derived as follows:

2A0 = A0e kt

2 = e kt Divide by A0.
ln(2) = kt Take the natural logarithm.

t =   ln(2)_
k

 Divide by the coeffici t of t.
Thus the doubling time is

t =   ln(2)_
k
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Example 4 Finding a Function That Describes Exponential Growth

According to Moore’s Law, the doubling time for the number of transistors that can be put on a computer chip is 
approximately two years. Give a function that describes this behavior.
Solution The formula is derived as follows:

t =   ln(2)___
k The doubling time formula.

2 =   ln(2)___
k Use a doubling time of two years.

k =   ln(2)___
2 Multiply by k and divide by 2.

A = A0 e   
ln(2) _____ 2 t   Substitute k into the continuous growth formula.

The function is A0 e   
ln(2) _____ 2  t .

Try It #3
Recent data suggests that, as of 2013, the rate of growth predicted by Moore’s Law no longer holds. Growth has slowed 
to a doubling time of approximately three years. Find the new function that takes that longer doubling time into 
account.

Using newton’s law of Cooling
Exponential decay can also be applied to temperature. When a hot object is left in surrounding air that is at a lower 
temperature, the object’s temperature will decrease exponentially, leveling off as it approaches the surrounding air 
temperature. On a graph of the temperature function, the leveling off will correspond to a horizontal asymptote at 
the temperature of the surrounding air. Unless the room temperature is zero, this will correspond to a vertical shift of 
the generic exponential decay function. This translation leads to Newton’s Law of Cooling, the scientific formula for 
temperature as a function of time as an object’s temperature is equalized with the ambient temperature 

T(t) = Ae kt + Ts

This formula is derived as follows:
T(t) = Ab ct + Ts

T(t) = Ae ln(bct) + Ts Laws of logarithms.
T(t) = Ae ctln(b) + Ts Laws of logarithms.
T(t) = Ae kt + Ts Rename the constant cln(b), calling it k.

Newton’s law of cooling
The temperature of an object, T, in surrounding air with temperature Ts will behave according to the formula

T(t) = Ae kt + Ts

where
• t is time
• A is the difference between the initial temperature of the object and the surroundings
• k is a constant, the continuous rate of cooling of the object

How To…
Given a set of conditions, apply Newton’s Law of Cooling.
1. Set Ts equal to the y-coordinate of the horizontal asymptote (usually the ambient temperature).
2. Substitute the given values into the continuous growth formula T(t) = Ae kt + Ts to find the parameters A and k.
3. Substitute in the desired time to find the temperature or the desired temperature to find the time.
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Example 5 Using Newton’s Law of Cooling

A cheesecake is taken out of the oven with an ideal internal temperature of 165°F, and is placed into a 35°F 
refrigerator. After 10 minutes, the cheesecake has cooled to 150°F. If we must wait until the cheesecake has cooled 
to 70°F before we eat it, how long will we have to wait?
Solution Because the surrounding air temperature in the refrigerator is 35 degrees, the cheesecake’s temperature 
will decay exponentially toward 35, following the equation

T(t) = Ae kt + 35
We know the initial temperature was 165, so T(0) = 165.

165 = Ae k0 + 35 Substitute (0, 165).
A = 130 Solve for A.

We were given another data point, T(10) = 150, which we can use to solve for k.
150 = 130e k10 + 35 Substitute (10, 150).
115 = 130e k10 Subtract 35.

  115 ___ 130   = e 10k Divide by 130.

ln    115 ___ 130     = 10k Take the natural log of both sides.

k =    
ln    115 ___ 130   

 _ 10   ≈ −0.0123 Divide by the coeffici t of k.

This gives us the equation for the cooling of the cheesecake: T(t) = 130e −0.0123t + 35.
Now we can solve for the time it will take for the temperature to cool to 70 degrees.

70 = 130e−0.0123t + 35 Substitute in 70 for T(t).
35 = 130e−0.0123t Subtract 35.

  35 ___ 130   = e−0.0123t Divide by 130.

ln    35 ___ 130     = −0.0123t Take the natural log of both sides

t =     
ln    35 ___ 130   

 _ 
−0.0123   ≈ 106.68 Divide by the coeffici t of t.

It will take about 107 minutes, or one hour and 47 minutes, for the cheesecake to cool to 70°F.

Try It #4
A pitcher of water at 40 degrees Fahrenheit is placed into a 70 degree room. One hour later, the temperature has risen 
to 45 degrees. How long will it take for the temperature to rise to 60 degrees?

Using logistic growth models
Exponential growth cannot continue forever. Exponential models, while they may be useful in the short term, tend to 
fall apart the longer they continue. Consider an aspiring writer who writes a single line on day one and plans to double 
the number of lines she writes each day for a month. By the end of the month, she must write over 17 billion lines, or 
one-half-billion pages. It is impractical, if not impossible, for anyone to write that much in such a short period of time. 
Eventually, an exponential model must begin to approach some limiting value, and then the growth is forced to slow. 
For this reason, it is often better to use a model with an upper bound instead of an exponential growth model, though 
the exponential growth model is still useful over a short term, before approaching the limiting value.
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The logistic growth model is approximately exponential at first, but it has a reduced rate of growth as the output 
approaches the model’s upper bound, called the carrying capacity. For constants a, b, and c, the logistic growth of a 
population over time x is represented by the model

f (x) =   c _______
1 + ae−b x  

The graph in Figure 6 shows how the growth rate changes over time. The graph increases from left to right, but the 
growth rate only increases until it reaches its point of maximum growth rate, at which point the rate of increase 
decreases.

xInitial value of population
Point of maximum growth

Carrying capacity
f (x)

f (x) =

y = c

(           )0 c
1+a,

c
1 + ae–bx

(             )c
2

ln(a)
b ,

Figure 6

logistic growth
The logistic growth model is

f (x) =   c _
1 + ae−b x 

where
• c _____ 1 + a   is the initial value

• c is the carrying capacity, or limiting value
• b is a constant determined by the rate of growth.

Example 6 Using the Logistic-Growth Model

An influenza epidemic spreads through a population rapidly, at a rate that depends on two factors: The more people 
who have the flu, the more rapidly it spreads, and also the more uninfected people there are, the more rapidly it spreads. 
These two factors make the logistic model a good one to study the spread of communicable diseases. And, clearly, there 
is a maximum value for the number of people infected: the entire population.
For example, at time t = 0 there is one person in a community of 1,000 people who has the flu. So, in that community, 
at most 1,000 people can have the flu. Researchers find that for this particular strain of the flu, the logistic growth 
constant is b = 0.6030. Estimate the number of people in this community who will have had this flu after ten days. 
Predict how many people in this community will have had this flu after a long period of time has passed.
Solution We substitute the given data into the logistic growth model

f (x) =   c _______
1 + ae−b x  

Because at most 1,000 people, the entire population of the community, can get the flu, we know the limiting value is  
c = 1000. To find a, we use the formula that the number of cases at time t = 0 is   c _ 1 + a   = 1, from which it follows that a = 999.

This model predicts that, after ten days, the number of people who have had the flu is f (x) =   1000 ____________  1 + 999e−0.6030x   ≈ 293.8. Because

the actual number must be a whole number (a person has either had the flu or not) we round to 294. In the long term, the 
number of people who will contract the flu is the limiting value, c = 1000.

Analysi s Remember that, because we are dealing with a virus, we cannot predict with certainty the number of people 
infected. The model only approximates the number of people infected and will not give us exact or actual values. The graph in  
Figure 7 gives a good picture of how this model fits the data.
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Figure 7 The graph of f (x) = 1000 __  
1 + 999e −0.6030x 

Try It #5
Using the model in Example 6, estimate the number of cases of flu on day 15.

Choosing an Appropriate model for data
Now that we have discussed various mathematical models, we need to learn how to choose the appropriate model 
for the raw data we have. Many factors influence the choice of a mathematical model, among which are experience, 
scientific laws, and patterns in the data itself. Not all data can be described by elementary functions. Sometimes, a 
function is chosen that approximates the data over a given interval. For instance, suppose data were gathered on the 
number of homes bought in the United States from the years 1960 to 2013. After plotting these data in a scatter plot, 
we notice that the shape of the data from the years 2000 to 2013 follow a logarithmic curve. We could restrict the 
interval from 2000 to 2010, apply regression analysis using a logarithmic model, and use it to predict the number of 
home buyers for the year 2015.
Three kinds of functions that are often useful in mathematical models are linear functions, exponential functions, and 
logarithmic functions. If the data lies on a straight line, or seems to lie approximately along a straight line, a linear 
model may be best. If the data is non-linear, we often consider an exponential or logarithmic model, though other 
models, such as quadratic models, may also be considered.
In choosing between an exponential model and a logarithmic model, we look at the way the data curves. This is called 
the concavity. If we draw a line between two data points, and all (or most) of the data between those two points lies 
above that line, we say the curve is concave down. We can think of it as a bowl that bends downward and therefore 
cannot hold water. If all (or most) of the data between those two points lies below the line, we say the curve is concave 
up. In this case, we can think of a bowl that bends upward and can therefore hold water. An exponential curve, whether 
rising or falling, whether representing growth or decay, is always concave up away from its horizontal asymptote. A 
logarithmic curve is always concave away from its vertical asymptote. In the case of positive data, which is the most 
common case, an exponential curve is always concave up, and a logarithmic curve always concave down.
A logistic curve changes concavity. It starts out concave up and then changes to concave down beyond a certain point, 
called a point of inflection.
After using the graph to help us choose a type of function to use as a model, we substitute points, and solve to find the 
parameters. We reduce round-off rror by choosing points as far apart as possible.
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Example 7 Choosing a Mathematical Model

Does a linear, exponential, logarithmic, or logistic model best fit the values listed in Table 1? Find the model, and use 
a graph to check your choice.

x 1 2 3 4 5 6 7 8 9

y 0 1.386 2.197 2.773 3.219 3.584 3.892 4.159 4.394

Table 1

Solution First, plot the data on a graph as in Figure 8. For the purpose of graphing, round the data to two significant 
digits.
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Figure 8

Clearly, the points do not lie on a straight line, so we reject a linear model. If we draw a line between any two of the 
points, most or all of the points between those two points lie above the line, so the graph is concave down, suggesting 
a logarithmic model. We can try y = aln(b x). Plugging in the first point, (1,0), gives 0 = alnb.
We reject the case that a = 0 (if it were, all outputs would be 0), so we know ln(b) = 0. Thus b = 1 and y = aln(x). Ne xt 
we can use the point (9,4.394) to solve for a:
 y = aln(x)
 4.394 = aln(9)

 a =   4.394 _____ ln(9)  

Because a =   4.394 _ 
ln(9)

   ≈ 2, an appropriate model for the data is y = 2ln(x).

To check the accuracy of the model, we graph the function together with the given points as in Figure 9.
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Figure 9  The graph of y = 2lnx.

We can conclude that the model is a good fit to the data.
Compare Figure 9 to the graph of y = ln(x2) shown in Figure 10.
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Figure 10  The graph of y = ln(x 2)

The graphs appear to be identical when x > 0. A quick check confirms this conclusion: y = ln(x 2) = 2ln(x) for x > 0.
However, if x < 0, the graph of y = ln(x 2) includes a “extra” branch, as shown in Figure 11. This occurs because, while  
y = 2ln(x) cannot have negative values in the domain (as such values would force the argument to be negative), the 
function y = ln(x 2) can have negative domain values.

x

y

–2–4–6–8–10 –2
–4
–6
–8

–10

642

2
4
6
8

10

8 10

y = ln(x2)

Figure 11

Try It #6
Does a linear, exponential, or logarithmic model best fit the data in Table 2? Find the model.

x 1 2 3 4 5 6 7 8 9

y 3.297 5.437 8.963 14.778 24.365 40.172 66.231 109.196 180.034

Table 2 

expressing an exponential model in base e
While powers and logarithms of any base can be used in modeling, the two most common bases are 10 and e. In science 
and mathematics, the base e is often preferred. We can use laws of exponents and laws of logarithms to change any 
base to base e.

How To…
Given a model with the form y = ab x, change it to the form y = A0e kx.
1. Rewrite y = ab x as y = aeln(b x).
2. Use the power rule of logarithms to rewrite y as y = ae xln(b) = aeln(b)x.
3. Note that a = A0 and k = ln(b) in the equation y = A0ekx.
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Example 8 Changing to base e

Change the function y = 2.5(3.1)x so that this same function is written in the form y = A0e kx.
Solution

The formula is derived as follows
y = 2.5(3.1)x

= 2.5e ln(3.1x ) Insert exponential and its inverse.
= 2.5e xln3.1 Laws of logs.
= 2.5e (ln3.1)x Commutative law of multiplication

Try It #7
Change the function y = 3(0.5)x to one having e as the base.

Access these online resources for additional instruction and practice with exponential and logarithmic models.

• logarithm Application – ph (http://openstaxcollege.org/l/logph)

• exponential model – Age Using half-life (http://openstaxcollege.org/l/expmodelhalf)

• newton’s law of Cooling (http://openstaxcollege.org/l/newtoncooling)

• exponential growth given doubling Time (http://openstaxcollege.org/l/expgrowthdbl)

• exponential growth – Find Initial Amount given doubling Time (http://openstaxcollege.org/l/initialdouble)
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6.7 SeCTIOn exeRCISeS

veRbAl
1. With what kind of exponential model would half-life 

be associated? What role does half-life play in these 
models?

2. What is carbon dating? Why does it work? Give an 
example in which carbon dating would be useful.

3. With what kind of exponential model would 
doubling time be associated? What role does 
doubling time play in these models?

4. Defi e Newton’s Law of Cooling. Then name at least 
three real-world situations where Newton’s Law of 
Cooling would be applied.

5. What is an order of magnitude? Why are orders of 
magnitude useful? Give an example to explain.

nUmeRIC

6. The temperature of an object in degrees Fahrenheit after t minutes is represented by the equation 
T(t) = 68e −0.0174t + 72. To the nearest degree, what is the temperature of the object after one and a half hours?

For the following exercises, use the logistic growth model f (x) =   150 _ 
1 + 8e−2x  .

7. Find and interpret f (0). Round to the nearest tenth. 8. Find and interpret f (4). Round to the nearest tenth.
9. Find the carrying capacity. 10. Graph the model.

11. Determine whether the data from the table could 
best be represented as a function that is linear, 
exponential, or logarithmic. Then write a formula 
for a model that represents the data.

x –2 –1 0 1 2 3 4 5
f (x) 0.694 0.833 1 1.2 1.44 1.728 2.074 2.488

12. Rewrite f (x) = 1.68(0.65)x as an exponential 
equation with base e to five signifi ant digits.

TeChnOlOgy
For the following exercises, enter the data from each table into a graphing calculator and graph the resulting scatter 
plots. Determine whether the data from the table could represent a function that is linear, exponential, or logarithmic.

13. x 1 2 3 4 5 6 7 8 9 10

f (x) 2 4.079 5.296 6.159 6.828 7.375 7.838 8.238 8.592 8.908
14. x 1 2 3 4 5 6 7 8 9 10

f (x) 2.4 2.88 3.456 4.147 4.977 5.972 7.166 8.6 10.32 12.383
15. x 4 5 6 7 8 9 10 11 12 13

f (x) 9.429 9.972 10.415 10.79 11.115 11.401 11.657 11.889 12.101 12.295
16. 

x 1.25 2.25 3.56 4.2 5.65 6.75 7.25 8.6 9.25 10.5

f (x) 5.75 8.75 12.68 14.6 18.95 22.25 23.75 27.8 29.75 33.5

For the following exercises, use a graphing calculator and this scenario: the population of a fish farm in t years is 
modeled by the equation P(t) =   1000 _ 

1 + 9e−0.6t   .

17. Graph the function. 18. What is the initial population of fish?
19. To the nearest tenth, what is the doubling time for 

the fish population?
20. To the nearest whole number, what will the fish 

population be after 2 years?
21. To the nearest tenth, how long will it take for the 

population to reach 900?
22. What is the carrying capacity for the fish population? 

Justify your answer using the graph of P.
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exTenSIOnS
23. A substance has a half-life of 2.045 minutes. If the 

initial amount of the substance was 132.8 grams, 
how many half-lives will have passed before the 
substance decays to 8.3 grams? What is the total 
time of decay?

24. The formula for an increasing population is given by 
P(t) = P0e rt where P0 is the initial population and  
r > 0. Derive a general formula for the time t it takes 
for the population to increase by a factor of M.

25. Recall the formula for calculating the magnitude of 
an earthquake, M = 2 _ 3  log     S __ S0

    . Show each step for 

solving this equation algebraically for the seismic 
moment S.

26. What is the y-intercept of the logistic growth model  
y =   c ________ 1 + ae−rx  ? Show the steps for calculation. What 
does this point tell us about the population?

27. Prove that b x = e xln(b) for positive b ≠ 1.

ReAl-WORld APPlICATIOnS
For the following exercises, use this scenario: A doctor prescribes 125 milligrams of a therapeutic drug that decays 
by about 30% each hour.

28. To the nearest hour, what is the half-life of the drug? 29. Write an exponential model representing the 
amount of the drug remaining in the patient’s 
system after t hours. Then use the formula to fi d 
the amount of the drug that would remain in the 
patient’s system after 3 hours. Round to the nearest 
milligram.

30. Using the model found in the previous exercise, fi d 
f (10) and interpret the result. Round to the nearest 
hundredth.

For the following exercises, use this scenario: A tumor is injected with 0.5 grams of Iodine-125, which has a decay 
rate of 1.15% per day.

31. To the nearest day, how long will it take for half of 
the Iodine-125 to decay?

32. Write an exponential model representing the 
amount of Iodine-125 remaining in the tumor after 
t days. Then use the formula to fi d the amount of 
Iodine-125 that would remain in the tumor after 60 
days. Round to the nearest tenth of a gram.

33. A scientist begins with 250 grams of a radioactive 
substance. After 250 minutes, the sample has decayed 
to 32 grams. Rounding to five signifi ant digits, write 
an exponential equation representing this situation. 
To the nearest minute, what is the half-life of this 
substance?

34. The half-life of Radium-226 is 1590 years. What is 
the annual decay rate? Express the decimal result 
to four signifi ant digits and the percentage to two 
signifi ant digits.

35. The half-life of Erbium-165 is 10.4 hours. What is 
the hourly decay rate? Express the decimal result 
to four signifi ant digits and the percentage to two 
signifi ant digits.

36. A wooden artifact from an archeological dig 
contains 60 percent of the carbon-14 that is present 
in living trees. To the nearest year, about how many 
years old is the artifact? (The half-life of carbon-14 is 
5730 years.)

37. A research student is working with a culture of 
bacteria that doubles in size every twenty minutes. 
The initial population count was 1350 bacteria. 
Rounding to five signifi ant digits, write an 
exponential equation representing this situation. To 
the nearest whole number, what is the population 
size after 3 hours?



SECTION 6.7 sectioN exercises 551

For the following exercises, use this scenario: A biologist recorded a count of 360 bacteria present in a culture after 5 
minutes and 1,000 bacteria present after 20 minutes.

38. To the nearest whole number, what was the initial 
population in the culture?

39. Rounding to six signifi ant digits, write an 
exponential equation representing this situation. 
To the nearest minute, how long did it take the 
population to double?

For the following exercises, use this scenario: A pot of boiling soup with an internal temperature of 100° Fahrenheit 
was taken off he stove to cool in a 69° F room. After fifteen minutes, the internal temperature of the soup was 95° F.

40. Use Newton’s Law of Cooling to write a formula that 
models this situation.

41. To the nearest minute, how long will it take the soup 
to cool to 80° F?

42. To the nearest degree, what will the temperature be 
after 2 and a half hours?

For the following exercises, use this scenario: A turkey is taken out of the oven with an internal temperature of 165°
Fahrenheit and is allowed to cool in a 75° F room. After half an hour, the internal temperature of the turkey is 145° F.

43. Write a formula that models this situation. 44. To the nearest degree, what will the temperature be 
after 50 minutes?

45. To the nearest minute, how long will it take the 
turkey to cool to 110° F?

For the following exercises, find the value of the number shown on each logarithmic scale. Round all answers to the 
nearest thousandth.

46. 

0–1–2–3–4–5 1 2 3 4

log (x)

5

47. 

0–1–2–3–4–5 1 2 3 4

log (x)

5

48. Plot each set of approximate values of intensity of 
sounds on a logarithmic scale: Whisper: 10−10  W ___ m2  , 

Vacuum: 10−4  W ___ m2  , Jet: 102  W ___ m2  

49. Recall the formula for calculating the magnitude 
of an earthquake, M = 2 __ 3  log     S __ S0

    . One earthquake 

has magnitude 3.9 on the MMS scale. If a second 
earthquake has 750 times as much energy as the fi st, 
fi d the magnitude of the second quake. Round to 
the nearest hundredth.

For the following exercises, use this scenario: The equation N(t) =   500 _ 
1 + 49e−0.7t   models the number of people in a town 

who have heard a rumor after t days.

50. How many people started the rumor? 51. To the nearest whole number, how many people will 
have heard the rumor after 3 days?

52. As t increases without bound, what value does N(t) 
approach? Interpret your answer.

For the following exercise, choose the correct answer choice.

53. A doctor and injects a patient with 13 milligrams of radioactive dye that decays exponentially. After 12 minutes, 
there are 4.75 milligrams of dye remaining in the patient’s system. Which is an appropriate model for this 
situation?

 a. f (t) = 13(0.0805)t   b. f (t) = 13e0.9195t   c. f (t) = 13e(−0.0839t)   d. f (t) =   4.75 __________  1 + 13e−0.83925t  


